EXPLORE

  

  • Strategy

Leaves communicate pest damage: plants

Loading...

Webworms on mulberry leaf / Camelia TWU / LicenseCC-by-nc-sa - Attribution Non-commercial Share Alike

The leaves of some plants protect from pests because as they are chewed, they release a chemical combination of acids and alcohols that attract pest-eating insects.

BIOMIMICRY TAXONOMY
Summary
One way plants protect themselves from pest damage is by using a highly-evolved chemical language. This chemical language communicates detailed information regarding what specific kind of insect pest is causing damage to the plant, and thus attracts the appropriate pest-eating insect to “rescue” it by killing off the pest.
 
Damage from insect feeding elicits the release of signaling molecules systemically within the plant. These signaling molecules turn on genes for the production of volatile compounds, acids and alcohols which evaporate into the surrounding air to communicate the presence of the pest insect to pest-eating insects. Plants can recognize various insect pests by proteins in their oral secretions, as well as by the type of damage they cause. For example, piercing and sucking insects (such as whiteflies and aphids) elicit different signaling molecules than chewing insects (such as caterpillars). Because the signaling molecules elicited by different insect pests vary, the genes activated for volatile compound production are unique to that pest species, alone. The result is that the plant produces a specific volatile blend that attracts the most appropriate pest-eating insect to rescue the plant from the threat at hand.
 
The release of plant volatiles can be stimulated by an attack from a wide range of insect species, from mountain pine beetles to aphids. Furthermore, the type of pest-eating insect that is attracted to the plant’s volatiles can vary from parasite to predator.  In fact, plant volatiles can be perceived by any insect or plant in the surrounding area that stands to benefit from knowing the status of the plant. A community benefit of this volatile chemical communication strategy is that, because the chemicals are airborne, plants in close proximity to the affected plant receive a warning of the impending danger.

This summary was contributed by Melissa Moore Friedman
Excerpt

“Since the blends of HIPVs [herbivore induced plant volatiles] may vary with the attacking herbivore... various components and cross-talk between the involved signaling pathways are thought to be responsible for the characteristic terpenoid blend ... Several oxylipin compounds (JA) [jasmonic acid], its precursors, and related compounds] very probably act as master switches for herbivore stimulated plant responses, activating distinct sets of defense genes leading to terpenoid formation … Moreover, synergistic and antagonistic cross-talk among the signaling pathways (Ca 2+ [calcium ion], JA [jasmonic acid] and ethylene signaling) is involved in terpenoid biosynthesis, and this integrated signaling is responsible for volatile terpenoid formation in plants...” (Arimura et al. 2009:913).

 “...chewing arthropods increase endogenous JA levels but do not significantly induce SA [salicylic acid] levels, whereas sucking arthropods induce both JA and SA in wildtype plants...” (Arimura et al. 2009:913). 

About the inspiring organism
Med_3847078336_befb4dfcf6_b Plantae
Plantae

Learn more at EOL.org
Organism/taxonomy data provided by:
Species 2000 & ITIS Catalogue of Life: 2008 Annual Checklist


Bioinspired products and application ideas

Application Ideas: Sensor that would release a chemical signal when damaged. Natural pest control.

Industrial Sector(s) interested in this strategy: Construction, manufacturing

References
Bodanis, D. 1992. The Secret Garden: Dawn to Dusk in the Astonishing Hidden World of the Garden. Simon & Schuster. 187 p.
Learn More at Google Scholar Google Scholar  

Barbosa P; Castellanos I. 2005. Ecology of Predator-prey Interactions. New York: Oxford University Press. 394 p.
Learn More at Google Scholar Google Scholar  

Comments

Login to Post a Comment.
Sm_avatar
nelsonpitter
about 1 month ago
This comment was removed by a AskNature editor for the following reason:
perceived SPAM
1 to 1 of 1 Comments